
Two-Dimensional Curves

A curve in two-dimensional space (i.e., in the x,y coordinate system) may be represented
algebraically by an equation involving the variables x and y. If we can solve the equation for
y in terms of x, in such a way that any one value of x generates one value of y, then the
curve is the graph of a function–i.e., y is a function of x, y  fx. Graphically, this means
the curve passes the Vertical Line Test: Any vertical line will intersect the graph at no
more than one point.

For instance, given the equation 2x  3y  6, if we solve for y, we get y  2
3 x  2, so y is a

function of x, i.e., y  fx  2
3 x  2. The graph is a line with slope 2

3 and y intercept 0,2.
(A line may be thought of as a special case of a curve, namely, a curve that is straight.)
This is an example of a linear function. (Any oblique–i.e., slanted–line represents a linear
function. A horizontal line represents a constant function. A vertical line does not
represent a function at all.)

Given the equation 4x2  2y  10, if we solve for y, we get y  2x2  5, so y is a function of
x, i.e., y  fx  2x2  5. The graph is a downward opening parabola with y intercept
0,5. This is an example of a quadratic function.

Given an equation in x and y, it may be impossible to solve for y in terms of x, for example,
x  ycosx

5y7  1. Or it may be possible to solve for y in terms of x, but the resulting
formula may generate more than one value of y from one value of x. For instance, given
the equation x2  y2  9, solving for y gives us y   9  x2 , so one value of x generates
two values of y (for instance, when x  0 we get y  3 and y  3. In such cases, y is not a
function of x. Graphically, this means the curve fails the Vertical Line Test: A vertical line
may intersect the graph at more than one point. In the case of x2  y2  9, the graph is a
circle centered at the origin with radius 3. The vertical line x  0 intersects this circle at the
points 0,3 and 0,3, which are the y intercepts of the graph.

Whenever a curve is represented by an equation involving only x and y, the curve has no
orientation–i.e., there is no forward direction or backward direction for the curve.
(Orientation will be discussed in detail shortly.)

In Calculus II, we learned that a curve in two-dimensional space may be represented
algebraically by a pair of parametric equations, which express x and y each in terms of a
third variable, known as a parameter. We often use t (representing time) or  (representing
angle measure). Assuming the parameter is t, we generically refer to these equations as
x  xt, y  yt. The process of writing parametric equations to represent a curve is
known as parameterizing the curve. There is typically more than one way to do this.

When a curve is parameterized with respect to time, t, we think of it as the path of a moving
particle. The parametric equations give a unique position for the particle at each point in
time. This is known as a motion paradigm.

1



Assuming 0 is in the domain of the parametric equations, the point corresponding to t  0 or
  0 is of special interest; it is referred to as the initial point or starting point, denoted
P0. Different parametrizations of a curve may yield different starting points. For instance, if
x2  y2  9 is parameterized as x  3cos, y  3sin, the starting point is 3,0, but if we
use the parameterization x  3cos, y  3sin, the starting point is 3,0.

Parameterizing the curve also introduces an orientation for the curve–i.e., a forward
direction and a backward direction. The forward direction is the direction that we move
along the curve as the value of the parameter increases, whereas the backward direction
is the direction that we move along the curve as the value of the parameter decreases.
Different parametrizations of a curve may yield different orientations. For instance, if
x2  y2  9 is parameterized as x  3cos, y  3sin, the orientation is counter-clockwise
(i.e., the forward direction is counter-clockwise), but if we use the parameterization
x  3cos, y  3sin, the orientation is clockwise.

If x2  y2  9 is parameterized as x  3cos, y  3sin, the orientation is clockwise and the
starting point is 3,0.

A circle is an example of a simple closed curve. For such curves, it makes sense to
describe orientation or direction as either “clockwise” or “counter-clockwise.” For other
curves, such as parabolas, these terms are inapplicable. How can we describe direction for
such curves? In some cases, we may be able to describe direction as “leftward” or
“rightward,” but this wouldn’t work in all cases (for example, it would work for an upright
parabola, but not for a sideways parabola). Another option would be to describe direction
as “upward” or “downward,” but this again won’t work in all cases (for example, it would work
for a sideways parabola, but not for an upright parabola).

If we use the parameter t and if 1 is in the domain of the parametric equations, the point
corresponding to t  1 is of special interest; it is referred to as the unitary point and is
denoted P1. (As with P0, the point depends on the chosen parameterization.) We can say
the forward direction of the curve is the direction from P0 to P1.

The parabola y  2x2  5 could be parameterized so that x  t, y  2t2  5, in which case
P0  0,5 and P1  1,3. Or it could be parameterized so that x  t  4,
y  2t  42  5, in which case P0  4,27 and P1  5,45. Or it could be
parameterized so that x  t, y  2t2  5, in which case P0  0,5 and P1  1,3. The
first two parameterizations give us a rightward orientation, whereas the third gives us a
leftward orientation.

We have already discussed how to parameterize a line: Choose two different points, x0,y0
and x1,y1. Let a  x1  x0, and let b  y1  y0. Then the line has parametric equations
x  x0  at, y  y0  bt, where t  ,. The initial point is P0  x0,y0, and the unitary
point is P1  x1,y1. The forward direction is the direction we follow when moving from P0

to P1. Values of t between 0 and 1 give us points on the line between P0 and P1.
 If P1 lies to the right of P0, t  0 gives us points on the line to the left of P0, and t  1

gives us points on the line to the right of P1.
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 If P1 lies to the left of P0, t  0 gives us points on the line to the right of P0, and t  1
gives us points on the line to the left of P1.

 If P1 lies above P0, t  0 gives us points on the line below P0, and t  1 gives us
points on the line above P1.

 If P1 lies below P0, t  0 gives us points on the line above P0, and t  1 gives us
points on the line below P1.

For instance, to parameterize the line 2x  3y  6, we may choose P0  0,2 and
P1  3,0, so a  3 and b  2. The parametric equations are then x  0  3t, y  2  2t.
The orientation of this line is rightward and downward (or “southeast”). Since P1 is to the
right of and below P0, t  0 gives us points on the line to the left of and above P0, while
t  1 gives us points on the line to the right of and below P1.

Suppose a curve has parametric equations x  xt, y  yt. For any value of t, we obtain
a point on the curve, P t  xt,yt. The position vector for this point is rt   xt,yt 
 xti  ytj. Notice that this is a vector-valued function of one real variable (or
parameter), t. It is known as a position function for the curve. (Bear in mind, this function
depends upon the chosen parameterization for the curve. A given curve can have many
possible parameterizations and hence many possible position functions.) Of course, we
can use any variable in place of t.

For the line 2x  3y  6, we may use position function rt   3t, 2  2t . For the parabola
4x2  2y  10, we may use position function rt   t,2t2  5 . For the circle x2  y2  9,
we may use position function r   3cos, 3 sin .

Limits And Continuity:

In Calculus I, we learned the basic concept of the limit. If we have a function y  fx, we
can ask, does y approach any particular value as x approaches some specified value, such
as a. If it does, we say the function has a limiting value (or just a limit, for short) as x
approaches a. Suppose we have such a value. Call it L. We can say, “y approaches L as
x approaches a, ” which can be written more compactly as follows: y  L as x  a. We can
also write limxa y  L, or limxa fx  L, which would be pronounced, “The limit to the
function fx as x approaches a is L. ” For example, limx0

1
x sinx  1.

In Calculus I, we were dealing with functions that produced numerical values (i.e., for any
given numerical value of x, the function y  fx produces a numerical value of y. But now,
in Calculus III, we are dealing with functions that produce vector values. In other words, the
vector equation of a curve, rt   xt,yt , may be thought of as a function whose input
is the scalar (or real number) t, and whose output is the vector rt. For instance, given the
numerical value t  2, the function rt   t3, 1

t  produces the vector  8, 1
2 . Can we

apply the concept of the limit to such functions? We can! Here is how...

Given the vector-valued function rt   xt,yt , we can ask, does rt approach any
particular vector value as t approaches some specified numerical value, such as a. If it
does, we say the function has a limiting (vector) value (or just a limit, for short) as t
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approaches a. Suppose we have such a vector value. Call it L. We can say,
“rt approaches L as t approaches a, ” which can be written more compactly as follows:
rt  L as t  a. We can also write limta rt  L, which would be pronounced, “The
limit to the function rt as t approaches a is L. ”

That’s the basic idea. Now how do we go about finding this sort of limit? We use the
following principle...
 If rt   xt,yt , then limta rt   limta xt, lim ta yt 
 Equivalently, if rt  xti  ytj, then

limta rt  limta xti  limta ytj
Essentially, this says the limit distributes in the same way as scalar multiplication–recall that
crt   cxt,cyt .

Each of the limits on the right side of the equation can be evaluated using the methods of
Calculus I.

Suppose rt  1
t sin t i  t26t

t22t
j. Find limt0 rt.

Solution: limt0 rt  limt0
1
t sin t i  limt0

t26t
t22t

j  i  3j

As we learned in Calculus I, some limits do not exist. For instance, limx0 sin 1
x does not

exist, due to infinite oscillation. A limit “not existing” includes the possibility that the function
could approach infinity. For instance, limx0

1
x2

does not exist, because the function
approaches infinity as x approaches 0. We may write limx0

1
x2

 , but it is still the case
that the limit does not exist! (Saying the limit “exists” means the function approaches a
unique real number value, and  is not a real number.)

Likewise, in this new situation, a limit may or may not exist. In order for limta rt to exist,
both limits on the right side of the equation must exist. In other words, limta rt exists if
and only if both of the following limits exist:
 limta xt
 limta yt
If either of these does not exist, then limta rt does not exist.

For instance, suppose rt   5t  2, 1
t3 . lim t3 rt does not exist, because limt3

1
t3

does not exist.

In Calculus I, we learned the concept of continuity. If we have a function y  fx, and if
we have a specified value of x, such as a, we can ask whether or not the function is
continuous at a. In order for the function to be continuous at a, all three of the following
conditions must be met:
1. fa must be defined. In other words, a must be in the domain of f.
2. limxa fx must exist.
3. limxa fx must be equal to fa, i.e., limxa fx  fa.
If any of these three conditions is not met, then the function is not continous (or is
discontinuous) at a. In this case, we may say the function has a discontinuity at a.
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Books or teachers may sometimes cite only the third condition listed above. Their thinking
is that saying limxa fx  fa presupposes both condition #1 and condition #2. However, I
believe it is best to think of it as three separate conditions, and to check them in the order I
have specified. First check condition #1; if it fails, go no further. If condition #1 is met, then
check condition #2; if it fails, go no further. If condition #2 is met, then check condition #3.

If we know in advance (based on some previously established theorem) that the function f is
continuous at a value a, then we can evaluate limxa fx by simple “plug and chug,” i.e., by
simply evaluating fa. For instance, we have a theorem that says a polynomial function is
continuous for all real values of x. Hence, to evaluate limx5 3x2  7x  4, we just plug in 5
for x, giving us 44. But be careful. Plug and chug does not work when the function is not
continuous! For instance, you cannot evaluate limt0

1
t sin t by plug and chug.

The concept of continuity can be applied to vector-valued functions. The function
rt   xt,yt  is continuous at t  a if and only if all three of the following conditions
are met:
1. ra must be defined, which means xa and ya must both be defined. In other

words, a must be in the domain of each function.
2. limta rt must exist, which means limta xt and limta yt must both exist.
3. limta rt must equal ra, which means limta xt  xa and limta yt  ya.
If any of these three conditions is not met, then the function is not continous (or is
discontinuous) at a. In this case, we may say the function has a discontinuity at a.

Derivatives:

If a curve has a nonvertical tangent line at a certain point, the slope of the tangent line is
obtained by differentiation. When y is a function of x, we use ordinary differentiation,
which gives us the derivative of y with respect to x, fx or dy

dx
, in terms of x. Specifically,

fx  limh0
fxh  fx

h
. The quantity fxh  fx

h
is known as the difference quotient. It

represents the slope of the secant line passing through a fixed point x, fx and a variable
point x  h, fx  h. As h approaches zero, the latter point approaches the former point
and the secant line approaches the tangent line. (Of course, in practice, we find the
derivative by using the rules of differentiation studied in Calculus I.)

In the case of a constant function or a linear function, the graph of the function is already a
line, so the tangent line coincides with this line itself; hence, the derivative at any point is
simply the slope of the original line (which means the derivative is a fixed value–i.e., it does
not vary as x varies). For other functions, the derivative is not fixed, but rather varies as x
varies. For instance, in the case of y  fx  2x2  5, the derivative is 4x (so the slope of
the tangent line is 12 when x is 3, whereas the slope of the tangent line is 20 when x is 5.
In such cases, the derivative is a function of one variable, x.

When y is not a function of x, we may find the derivative by using implicit differentiation:
We differentiate both sides of the equation with respect to x, and then solve the resulting
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equation for dy
dx

in terms of both x and y. For instance, in the case of x2  y2  9, we get
dy
dx

  x
y . In such cases, the derivative is a function of two variables, x and y. In the case

of x2  y2  9, consider two points that vertically align with each other,  2
2 , 2

2  and

 2
2 ,  2

2 . At the former, we get dy
dx

 1, and at the latter, we get dy
dx

 1. Thus, the
equation of the tangent line at the former point is y  x  2 , whereas the equation of the
tangent line at the latter point is y  x  2 .

When the curve has been parameterized, if the curve has a nonvertical tangent line at a
certain point, the slope of the tangent line may be obtained by parametric differentiation,
which gives us the slope in terms of the parameter. Suppose our parameter is t.
Generically, our parametric equations are x  xt, y  yt. Rather than expressing dy

dx
as

a function of x (as we would do in the case of ordinary differentiation), or as a function of
both x and y (as we would do in the case of implicit differentiation), we instead express it as
a function of t. First, we find the derivatives dx

dt
 xt and dy

dt
 yt. We then divide the

latter by the former, and the result is the slope of the tangent line, i.e., dy
dx

 dy
dt

 dx
dt

 yt
xt

.

Obviously, all these equations are valid if we replace t with a different parameter, such as .

Suppose the circle x2  y2  9 is parameterized as x  3cos, y  3sin. Then dx
d

 3sin
and dy

d
 3cos. When   

6 , we get the point  3 3
2 , 3

2 , and we get dx
d

  3
2 and

dy
d

 3 3
2 , so dy

dx
  3 . (This is the same result we would have obtained via implicit

differentiation.)

A vector-valued function of one parameter can be differentiated as follows. Assuming the
parameter is t, we define the derivative with respect to t to be limh0

1
h rt  h  rt,

which equals limh0
xth  xt

h
i  limh0

yth  yt
h

j, or xti  ytj, or dx
dt
i  dy

dt
j. In

component form, this is  xt,yt  or  dx
dt
, dy

dt
. The derivative is denoted rt or d

dt
rt

or dr
dt
.

When rt represents a position function and the parameter t represents time, then rt is
interpreted as the velocity function, in which case we may write vt in place of rt.

Notice that rt or vt is a vector. For the moment, assume this vector is nonzero. Then it
has a magnitude or length, which is a positive real number, and it has a direction. The

magnitude of velocity is the speed of motion, vt  xt2  yt2  dx
dt

2
 dy

dt

2
.

The direction of velocity represents the instantaneous direction of motion. This direction will
be along the curve’s tangent line at the given point. (To write the equation of the tangent
line, we use the velocity vector as the line’s direction vector.)

For example, for the parabola x  t, y  2t2  5, we have position function rt 
 t,2t2  5 , velocity function vt   1,4t , and speed function vt  1  16t2 . When
t  3, we have the point 3,13, the position vector  3,13 , the velocity vector
 1,12 , and speed 145  12.04. At the point 3,13, the tangent line has parametric
equations x  3  t, y  13  12t.
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Suppose that at a certain value of t, xt  0 and yt  0, so vt is a nonzero scalar
multiple of j. In this case, the curve has a vertical tangent line at the point in question.
On the other hand, suppose yt  0 and xt  0, so vt is a nonzero scalar multiple of i.
In this case, the curve has a horizontal tangent line at the point in question. If xt and
yt are both nonzero, the curve has an oblique (or slanted) tangent line at the point in
question. If xt  0 and yt  0 (in other words, if the velocity vector is the zero vector),
then the curve has a cusp or kink or sharp turn at the point in question. (In this case, it
may or may not have a tangent line at the point in question, depending on whether the
left-hand tangent coincides with the right-hand tangent.)

For the circle x  3cos, y  3sin, we have r   3sin, 3cos . r0   0,3   3j
and r   0,3   3j, so the circle has vertical tangent lines when   0 and   ,
i.e., at the points 3,0 and 3,0. r 

2    3,0   3i and r 3
2    3,0   3i, so the

circle has horizontal tangent lines when   
2 and   3

2 , i.e., at the points 0,3 and
0,3. r is never zero because the sine and cosine functions are never simultaneously
zero; hence the circle has no kinks.

The function y  x2/3 can be parameterized as x  t3, y  t2, which gives us vt 
 3t2, 2t . Since v0  0, the curve has a kink when t  0, i.e., at the point 0,0. In this
case, we have a vertical tangent line at the origin. (Note: In Calculus I, if we differentiated
the equation y  x2/3, we would get dy

dx
 2

3 x
1/3  2

3 3 x
, which is undefined when x is zero.)

Since rt is itself a vector-valued function of t, it may likewise be differentiated with respect
to t. The result is the second derivative of rt with respect to t, rt or d2r

dt2
. It is equal to

xti  ytj, or d2x
dt2

i  d2y

dt2
j, or  xt,yt , or  d2x

dt2
, d2y

dt2
.

When rt represents a position function and t represents time, rt is interpreted as the
acceleration function, in which case we may write at in place of rt. Its magnitude is

at  xt2  yt2  d2x
dt2

2
 d2y

dt2

2
.

See the Differentiation Rules on page 858 of the text.

One rule the text neglects to mention is this: For any constant vector C, d
dt
C  0
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Integrals:

Given two vector-valued functions ut and wt, if ut  wt for all t in an open interval,
then wt is the derivative of ut, and ut is an antiderivative of wt. Pay close attention
to the wording just used. We say “the” derivative because ut has a unique derivative, but
we say “an” antiderivative because wt will have infinitely many antiderivatives. For any
constant vector C, the function ut  C is an antiderivative of wt, because
d
dt ut  C  d

dt
ut  d

dt
C  ut  0  ut  wt. The collection of all antiderivatives of

wt is called the indefinite integral of wt and is denoted wt dt. We may write

wt dt  ut  C, where C is an arbitrary constant vector. The indefinite integral of wt
can also be referred to as the general antiderivative of wt.

The arbitrary constant vector can be expressed as  C1,C2 .

For example, consider ut   t2, sin t  and wt   2t, cos t . Since ut  wt for all
t  ,, wt is the derivative of ut, and ut is an antiderivative of wt.
  2t, cos t  dt   t2, sin t   C   t2, sin t    C1,C2    t2  C1, sin t  C2 .

A generic antiderivative of wt can be denoted Wt.

A particular antiderivative can be dictated by an initial condition. For instance, suppose
we seek the antiderivative of wt   2t, cos t  whose value when t  

2 is  5,7 . In
other words, find Wt so that W 

2    5,7 . We already know that the general
antiderivative of wt is  t2  C1, sin t  C2 . Hence, the challenge is to find the necessary
values of the constants C1 and C2. 

2

2
 C1  5, so C1  5  2

4  202

4 , and
sin 

2  C2  7, so C2  6. Hence, we want the particular antiderivative Wt 
 t2  202

4 , sin t  6 .

If wt   xt,yt , then wt dt    xt,yt  dt    xt dt,  yt dt , or
 xt dt i   yt dt j.

For any real numbers a and b, 
a

b

wt dt  
a

b

 xt,yt  dt   
a

b

xt dt,
a

b

yt dt , or


a

b

xt dt i  
a

b

yt dt j. This is known as the definite integral of wt over the interval on the

t axis with endpoints a and b. It gives us a particular vector, rather than a vector-valued
function. a and b are known as the limits or boundaries of integration.

If Wt is any antiderivative of wt, then 
a

b

wt dt  Wb Wa. This may be denoted

Wta
b
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